Selection methods and diversity preservation in many-objective evolutionary algorithms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Diversity as an Objective in Multi-Objective Evolutionary Algorithms

A key feature of an efficient and reliable multi-objective evolutionary algorithm is the ability to maintain genetic diversity within a population of solutions. In this paper, we present a new diversity-preserving mechanism, the Genetic Diversity Evaluation Method (GeDEM), which considers a distance-based measure of genetic diversity as a real objective in fitness assignment. This provides a du...

متن کامل

On the Convergence and Diversity-Preservation Properties of Multi-Objective Evolutionary Algorithms

Over the past few years, the research on evolutionary algorithms has demonstrated their niche in solving multi-objective optimization problems, where the goal is to find a number of Pareto-optimal solutions in a single simulation run. Many studies have depicted different ways evolutionary algorithms can progress towards the true Paretooptimal solutions with a widely spread distribution of solut...

متن کامل

Selection Methods for Evolutionary Algorithms

3.1 Fitness Proportionate Pelection (FPS) 3.2 Windowing 3.3 Sigma Scaling 3.4 Linear Scaling 3.5 Sampling Algorithms 3.6 Ranking 3.7 Linear Ranking 3.8 Exponential Ranking 3.9 Tournament Selection 3.10 Genitor or Steady State Models 3.11 Evolution Strategy and Evolutionary Programming Methods 3.12 Evolution Strategy Approaches 3.13 Top-n Selection 3.14 Evolutionary Programming Methods 3.15 The ...

متن کامل

Hybrid Methods for Multi-objective Evolutionary Algorithms

Hybrid methods of using evolutionary algorithms with a local search method are often used in the context of singleobjective real-world optimization. In this paper, we discuss a couple of hybrid methods for multi-objective realworld optimization. In the posteriori approach, the obtained non-dominated solutions of a multi-objective evolutionary algorithm (MOEA) run are modified using a local sear...

متن کامل

Many-Objective Evolutionary Optimisation

Many-objective evolutionary optimisation is a recent research area that is concerned with the optimisation of problems consisting of a large number of performance criteria using evolutionary algorithms. Despite the tremendous development that multi-objective evolutionary algorithms (MOEAs) have undergone over the last decade, studies addressing problems consisting of a large number of objective...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Data Technologies and Applications

سال: 2018

ISSN: 2514-9288

DOI: 10.1108/dta-01-2018-0009